

AVT GROUP

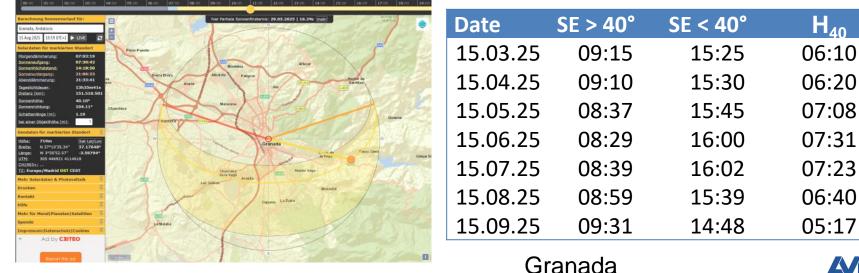
Airborne mapping: challenges and trends

Daniela Poli, Klaus Legat AVT Airborne Sensing

GeoSummit2025, 12 May 2025 / Budapest

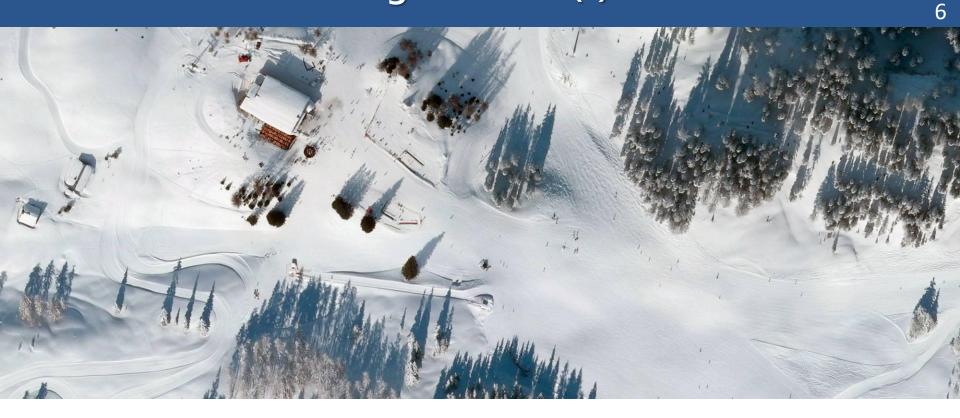
AVT-Airborne Sensing

- Aerial surveying company, specialized in photogrammetry
 - 30 employees, part of AVT Group with headquarter in Austria
 - 5 airplanes in Germany (Munster airport)
 - Sensors:
 - photogrammetric cameras (core business) by Vexcel: 1 x UltraCam Eagle Mark2, 1 x UltraCam Eagle Mark 4.1 and 2 x UltraCam Osprey 4.1
 - LiDAR sensor: Riegl VQ680
 - Thermal camera DualDigiTHERM (*new*), hyperspectral camera AisaFenix
 - Services: flight planning and execution, data processing, sale of Measuree sw licence, consultancy



Flight season(s)

- All over the year, depending on the latitude
 - Standard requirement for 30° sun elevation satisfied from February to October



Flight season(s)

- All over the year, depending on the application (selection)
 - Cartography (images) in urban environments: without vegetation, early spring and autumn, summer is not optimal
 - National EU programs for agriculture monitoring (orthophotos): from April / May to August / September
 - DTM (LiDAR): leaves-off season, late winter and early autumn, snow cover depends on altitude
 - Technical specifications in tender sometimes incoherent
 - UHI mapping: hot days in summer
 - Vegetation health analysis: according to the phenomenon to monitor
 - Ex. bark beetle effects on spurs in September
 - Winter orthophotos for tourism: snow season

Flight season(s)

Flight challenges

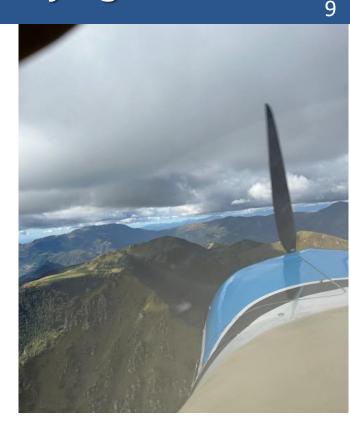
- Having the right airplane available at the right time
 - Airplane selection depends on speed (camera exposure, image overlap), altitude, number of hatches, ... requested for a certain project
 - Maintenance programs to be respected (every 50h, 100h, 200h)
 - Pilots and sensor operators' availability

Beechcraft200 Kingair Pressurized Hatch with glass plate Up to 28.000 ft

High flights Nadir flights only

Challenges

- Giving priorities
 - Customers **wish** / pretend that their project is flown a.s.a.p.
 - Penalties if deadlines are not respected
 - Stress during short windows of good weather, long list of projects to be flown, in different areas and with different sensors
 - Final decisions taken by the **crew**!
- Invest in the right sensor
 - Sensor upgrade is a **must** to be competitive
 - Investments are significant (min 600K EUR)
 - Performance, technical support, integration in the existing workflow
 - Readiness level of end users
 - Training of sensor operators and data processing staff



8

Challenges in aerial surveying

• Weather conditions

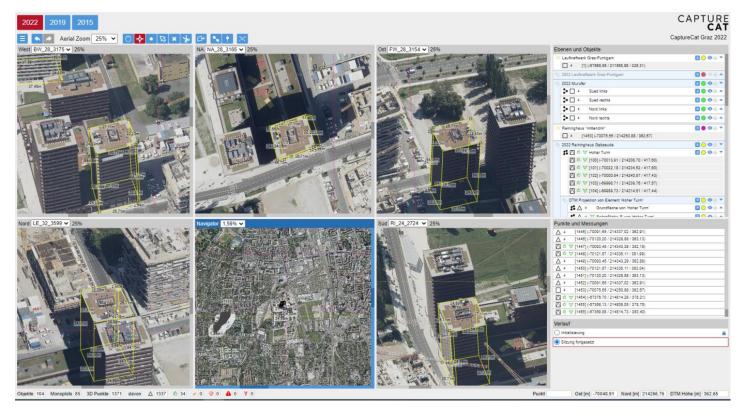
- Requirement: clear sky (≠ "good weather") and sun elevation > 30° for images
- LiDAR projects have less-demanding requirements than photo ones
- Changes observed in the last 5 10 years
 - Warmer air can accommodate higher humidity
 - Long-lasting cloud coverages
 - Long unstable periods
 - Extreme weather phenomena increase: heat, droughts, floods, storms

Challenges in aerial surveying

- Weather conditions
 - Mitigation measures
 - Meteorologist experts in the team
 - Projects distributed in all Europe, in countries with different climates
 - Operation base in Germany
 - Multi-lingual staff for project acquisition and management
 - Minimize flying time with use of large-format cameras
 - Propose alternative plans to customer
 - Fly below homogeneous high clouds
 - Fly with sun elevation < 30°

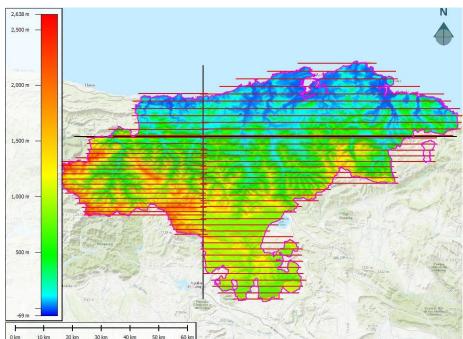
Adv. reduced shadows Radiometry matters!

Challenges in aerial surveying


- Meet end users' requirements
 - Adaptation to Urban Green Deal
 - Remote sensing at urban scale
 - Forest health and growth monitoring
 - Emergency mapping
 - Price!

- Support end users with tools for data exploitation
 - Hyperspectral images
 - Oblique aerial images ->measuree

measuree



measuree.net

Industry trends relevant for aerial survey

- Developments in photogrammetric aerial cameras
 - Continuous development, competition, options in the market
 - Larger image size is beneficial
 - Example, Cantabria (Spain)
 - Nadir flight, GSD 18 cm
 - Eagle Mark2 vs Eagel Mark4.1

	EM2 f 100mm	EM4.1 f 90mm
Strips	72	56
Images	~8.700	~6.000
Flying time	15,5	8,4

Industry trends relevant for aerial survey

• Developments in photogrammetric aerial cameras

– PAN + MS -> Bayer pattern

• Higher performance, currently allowed by some NMAs, trend for the others

– CCD –> CMOS

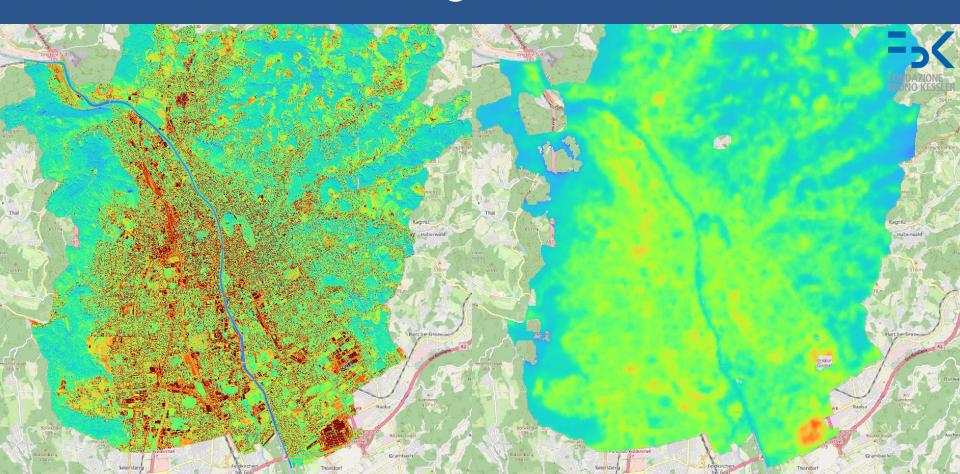
- Reduction of exposure time due to higher dynamics
- Processing time increased
- Pressure and time dependency -> geometric problems when working with flights at different heights - > problem not foreseen at design level, solved by manufacturer

14

Industry trends relevant for aerial survey

- Development of **hybrid systems**: oblique + LiDAR
 - Continuous development, competition, options in the market
 - Advantages: one-hatch airplane, one operator
 - Disadvantages: price, sensors cannot be used separately
 - Decision taken at AVT-AS: Osprey 4.1 and Riegl VQ680 instead of Dragon, operated with a two-hatch airplane
- Other useful combinations:
 - Hyperspectral camera + LiDAR for complete vegetation mapping
 - Hyperspectral camera and thermal camera for urban analysis

New end users requests


- Urban remote sensing for climate change mitigation planning, for example:
 - Mapping of UHI
 - Vegetation health analysis to prevent tree falling in case of *strong winds*
 - Each tree is a natural air condition, a forest is a green lung, mitigation tool for UHI generation -> solar energy used for growth, day warming reduction and night cooling, influence of vegetation on surrounding areas
 - Mapping of surface materials and estimation of imperviousness or runoff coefficients in case of *flooding*
- Other applications:
 - Building heat losses mapping, district heating leaks, mining inspection, asbestos mapping.
 - Other environmental analysis (i.e. rural areas analysis, pollution, roof degradataion)

Satellite images do not provide hyperspectral or thermal images at suitable resolutions for **urban scale** mapping

Graz thermal images: aerial vs satellite

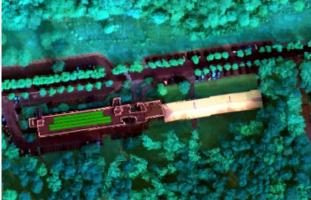
Data used for urban analysis

HIGH + RESOLUTION

Datasets	Ferrara, Italy		
	Resolution and sensor specs	Year	
Aerial images (nadir)	10cm, RGBI bands, [Vexel UltraCam Osprey 4.1]	2022	
Aerial images (oblique)	n.a.	-	
Orthophotos	10cm, RGBI bands	2022	
LIDAR point cloud	10 pt m ² [Riegl VQ780ii]	2022	
DTM, DSM	1m raster grid	2022	
Hyperspectral images	1m, 364 bands, VNIR and SWIR (0,4 - 2,5 µm) [AisaFENIX384 by Specim]	2022	
Thermal images	1m, night, LWIR (7,5 - 14,0 μm) [DualDigiTHERM by IGI]	2023	
Sentinel 3- SLSTR	1.4 km MWIR & LWIR	2018 -	
Landsat 8 & 9	30m (VIS, NIR, SWIR)	2013 -	
Superficial materials (classification map)	1m grid	2022	
Tree species (classification map)	1m grid	2022	
Building footprints	Vector layer, based on cadastre	2022	
Weather Stations data 18	T_2m, rainfall, RH, wind_dir & _mag	2021-	

Non – photogrammetric cameras

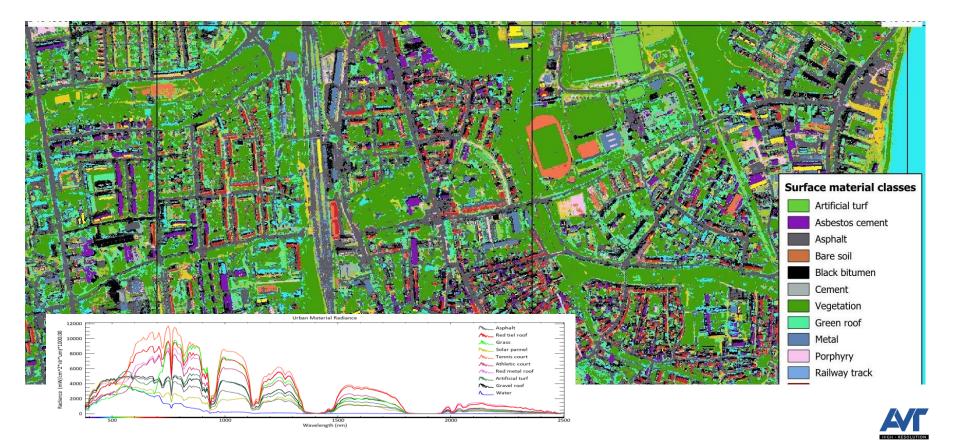
- Thermal camera systems
 - LWIR + PhaseOne
 - Operations:
 - Stable external air temperature to guarantee homogeneous response
 - Large image size to cover a city in max 3 hours
- Hyperspectral cameras:
 - Narrow bands, VNIR and SWIR (350 2.500 nm)
 - Operations: very high sun elevation

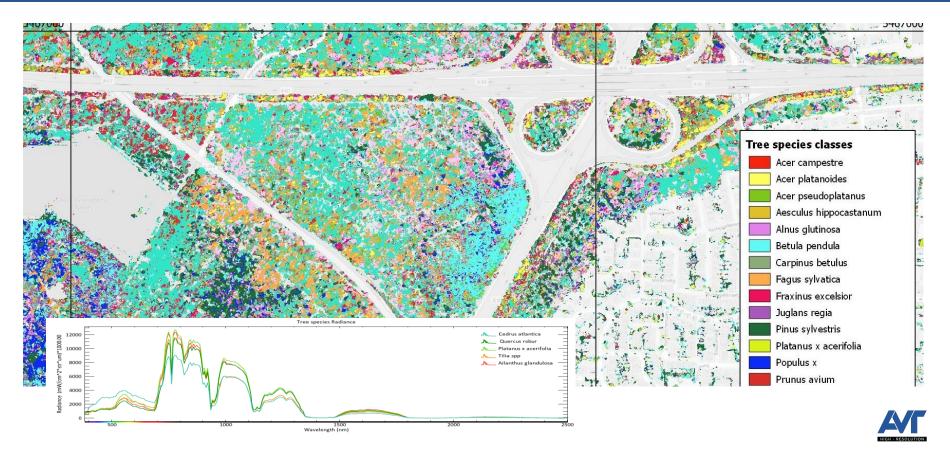

Dual DigiTHERM

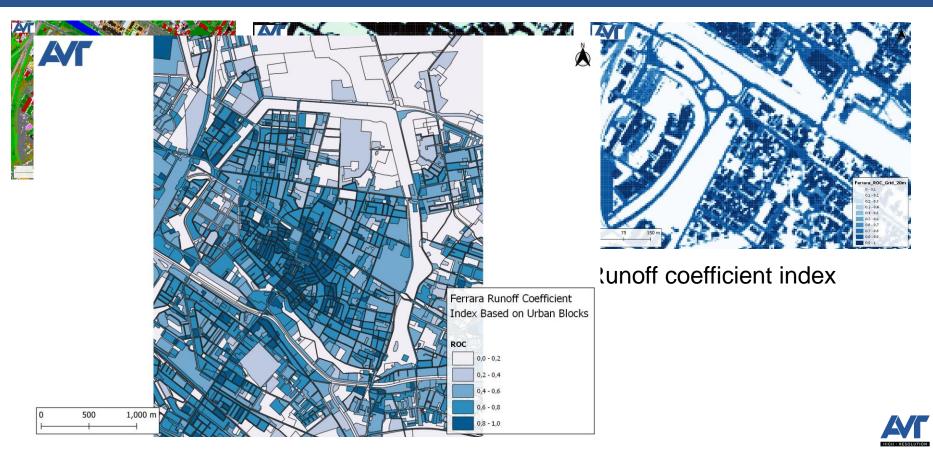
19

Hyperspectral view

Buildings

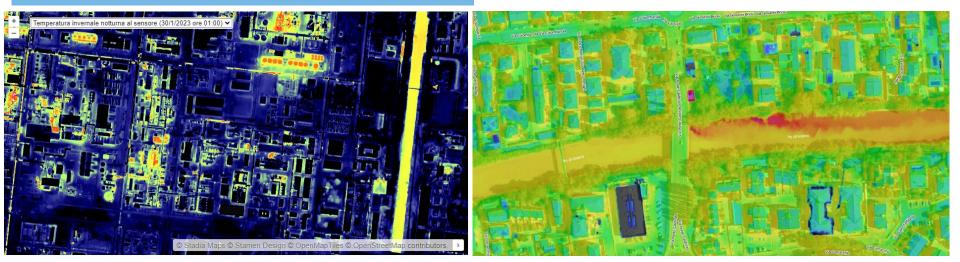



Urban forests


Speyer: surface mapping materials

Speyer: tree species

Value-added products

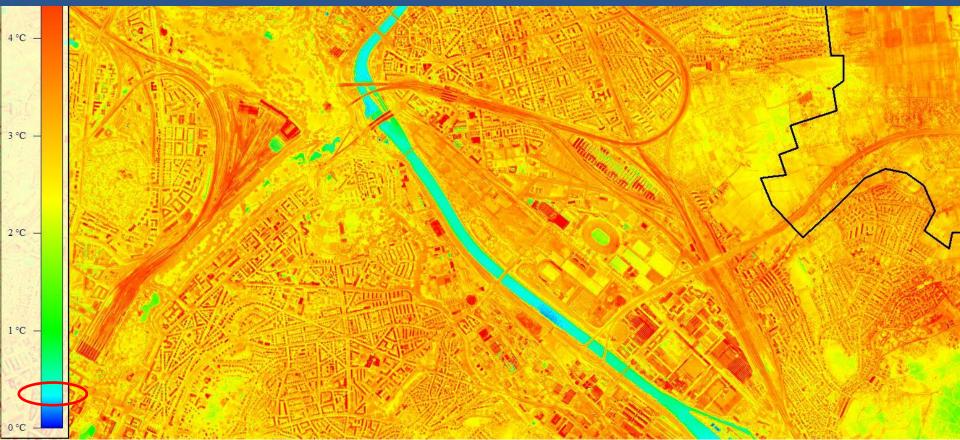


Graz winter: building states (isolation)

Ferrara winter: urban river analysis

https://sit.comune.fe.it/allegati/mappe/usage/RasterCOG.html

Industrial wastewater


Fluid dispersion

Graz winter: district heating leaks

Stuttgart summer (UHI): evening vs morning

Conclusions

- Aerial mapping is *vibrant* and **cool** sector, strictly linked to industry, end users, research
- Deliver reliable and accurate data within strict timelines, selection of sensors and workflows is supported by extensive internal (confidential) analysis
- Photogrammetric cameras and ALS cover largest part of the activities, but alternative sensors are demanded to meet **new user needs** and **requirements**
- Increasing support to decision makers: objective documentation of status und change to understand correlations
- The accuracy and variety of data, thermal data in the specific, is not comparable to those achieved from satellite images, but **combination** of satellite and aerial data is a must for long-time, small-scale analysis and prediction
- Collaboration with **research** could be expanded. Aerial mapping companies are not only operators, but they can also give significant feedback

Thank you for your attention!

Daniela Poli AVT Airborne Sensing Italia Trento, Italy <u>d.poli@avt.at</u>

