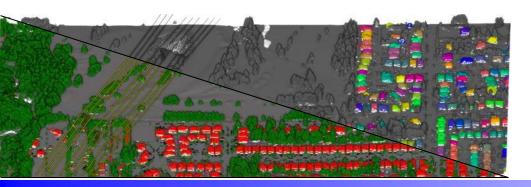
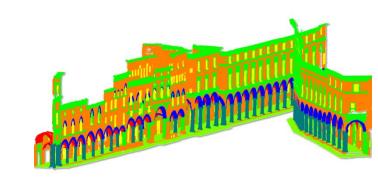


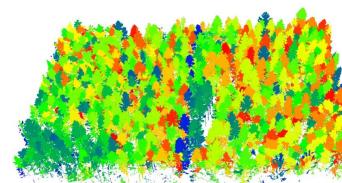
Giving a meaning to 3D point clouds

Fabio REMONDINO

3D Optical Metrology (3DOM) unit - Bruno Kessler Foundation (FBK) Trento, Italy Email: remondino@fbk.eu - http://3dom.fbk.eu

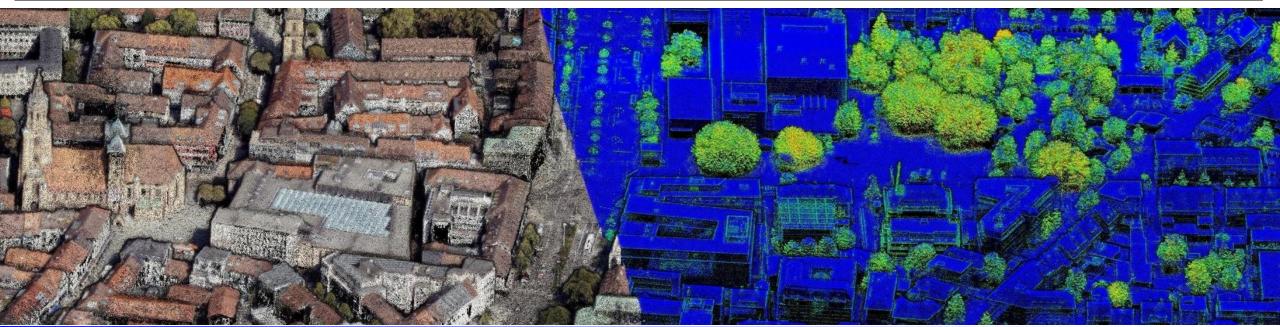






Point Cloud Generation

	PASSIVE (IMAGING)	HYBRID	ACTIVE (RANGING)
AERIAL & SATELLITE	 Linear sensors Large frame cameras Multi-view cameras (oblique) 	Single frame + LiDAROblique + LiDAR	 Traditional linear Airborne Laser Scanning SPL/Geiger-mode Airborne Laser Scanning
TERRESTRIAL	 DSLR cameras Panoramic / spherical cameras Smartphones 	 Mobile Mapping systems Hand-held / backpack system RGB-D sensors 	 TOF laser scanner (long-range) Triangulation laser scanners (short-range) Structured light systems (short-range)



Giving a meaning to 3D point clouds - Fabio Remondino

Vexcel Ultracam Osprey, flown by AVT Airborne Sensing:

Point Cloud Generation

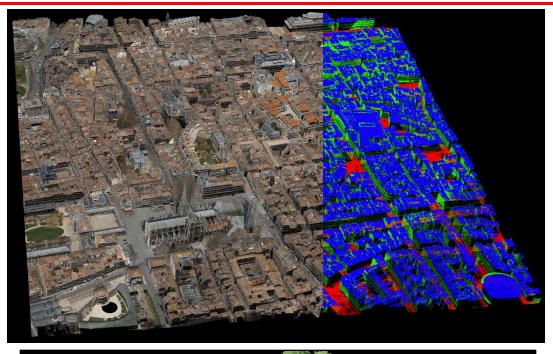
[Toschi, I., Ramos, M.M., Nocerino, E., Menna, F., Remondino, F., Moe, K., Poli, D., Legat, K., Fassi, F., 2017: Oblique photogrammetry supporting 3D urban reconstruction of complex scenarios. ISPRS Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., Vol. XLII-1-W1, pp. 519-526]

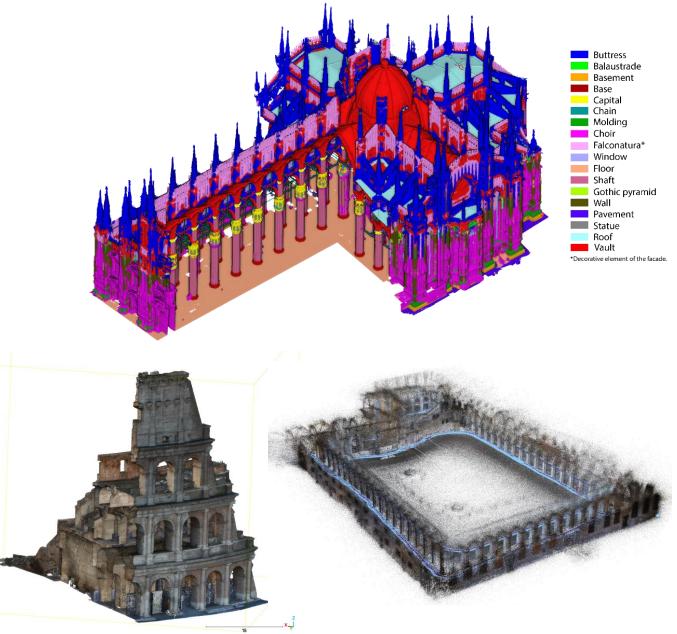
Semantic segmentation / 3D Classification

https://www.youtube.com/watch?v=h4m-Hu-7rfs

[Özdemir, E., Remondino, F., Golkar, A., 2021. An Efficient and General Framework for Aerial Point Cloud Classification in Urban Scenarios. Remote Sensing, Vol.13, 1985]

Point Clouds

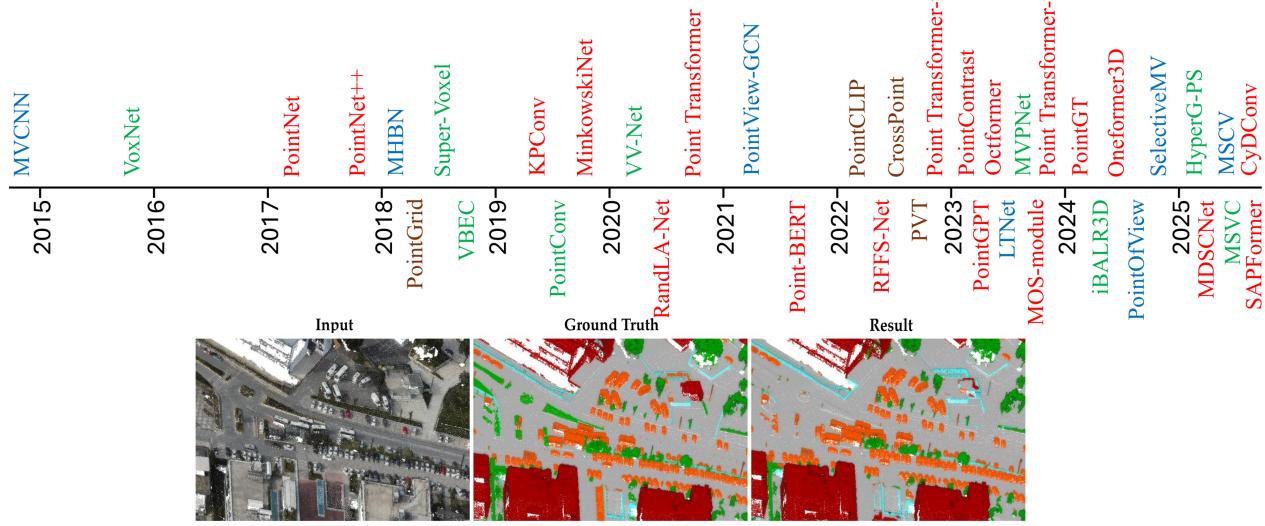




- □ Every **scenario** is different (shape, size, objects, etc.)
- □ Every **dataset** is different (resolution / density, sensor features/attributes, holes, etc.)
- Needs are different (LULC, change detection, forestry management, conservation / restoration, etc.)
- Point cloud are difficult by definition (orderless, irregularity, noise, non-uniform, uneven density, completeness, etc.)

Point Cloud Classification - Methods

Point-based Multi-View-based Voxel-based Polymorphic-based

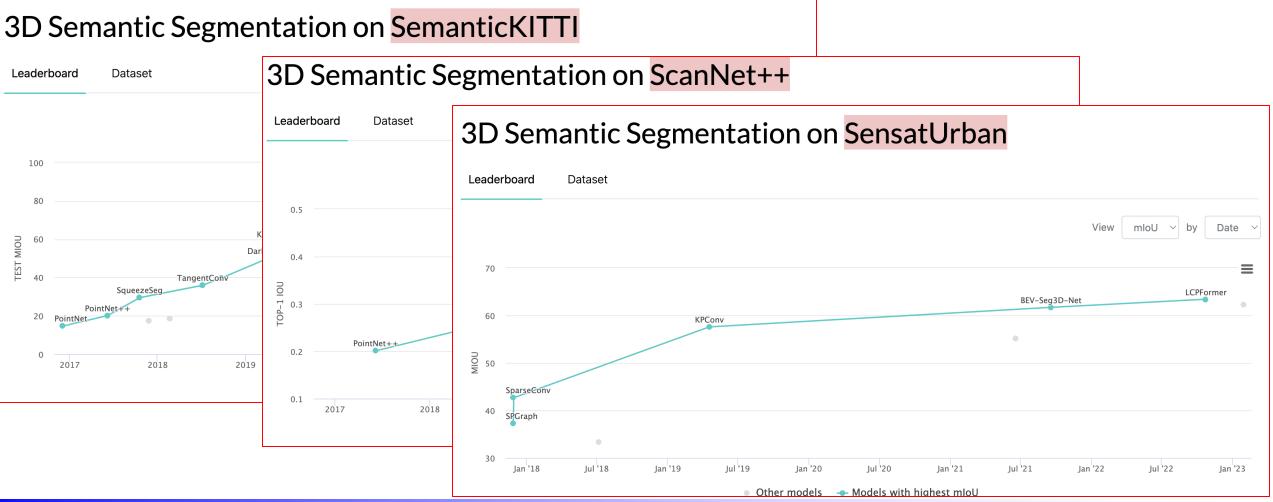


Ground Building High Vegetation Urban Object Vertical Surface

[Bayrak, O., Farella, E.M., Ma, Z., Remondino, F., Uzar, M., 2025: Combining 3D Urban Objects From All Around the World to Improve Object Classification and Semantic Segmentation. Remote Sensing, in press]

Point Cloud Classification - Methods

- ☐ one-size-fits-all? nooooooo ☺
- □ no unique winner, methods are fit for specific datasets, lack of generalization / replicability
- <u>https://paperswithcode.com/task/3d-semantic-segmentation</u>

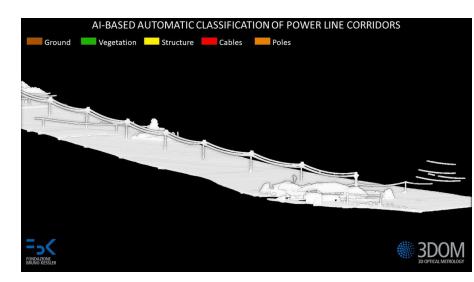


Point Cloud Classification - Datasets

2014	ISPRS Paris-rue-Mac	Name	Classes	Points (mil)	Spatial Size (m²)	RGB	Sensor
2015		ISPRS [33]	9	1.2	$1.6 \ge 10^{6}$	No	ALS
S	iQmulus	Paris-rue-Madame [34]	17	20	0.16 * 10 ³	No	MLS
2016		iQmulus [35]	8 (22)	300	10 x 10 ³	No	MLS
016		Semantic3D [36]	8	4009	-	No	TLS
2		Paris-Lille3D [19]	9 (50)	143	1.94 x 10 ³	No	MLS
2017 2018 2019 2020	Semantic3D	IEEE-GRSS [37]	5	102	34 x 10 ⁶	No	ALS
		SemanticKITTI [38]	22 (28)	4549	39.2 x 10 ³	No	MLS
2018	Paris-Lille3D	DublinCity [7]	13	260	2 x 10 ⁶	No	ALS
		Toronto3D [39]	8	78.3	$1 \ge 10^{3}$	Yes	MLS
2019	IEEE-GRSS	DALES [40]	8	505.3	10 x 10 ⁶	No	ALS
9	SemanticKIT	LASDU [41]	5	3.12	1.02 x 10 ⁶	No	ALS
2020	DublinCity	SensatUrban [15]	13	2847.1	7.64 x 10 ⁶	Yes	UAV-Photo
20	Toronto-3D DALES	Swiss3DCities [42]	5	226	2.7 x 10 ⁶	Yes	UAV-Photo
	LASDU SensatUrban	Campus3D [43]	24	937.1	1.58 x 10 ⁶	Yes	UAV-Photo
	Campus3D OpenGF	OpenGF [44]	2	500	47 x 10 ⁶	No	ALS
	Swiss3D Hessigheim	Hessigheim [20]	11	125.7	8 x 104	Yes	UAV-LiDAR
	STPLS3D	STPLS3D [21]	6	-	6 x 10 ⁶	Yes	UAV-Photo
022 20	KITTI-360	KITTI-360 [45]	37	1000	*73.7km	No	MLS
2023	-	HRHD-HK [46]	7	273	9 x 10 ⁶	Yes	UAV-Photo
S	HRHD-HK	YTU3D [47]	45	1700	2 x 10 ⁶	Yes	UAV-Photo
2024	YTU3D	WHU3D [24]	37	393	6.5 x 10₃	No	MLS + ALS
24	WHU3D CUS3D	CUS3D [48]	10	152.3	2.85 x 10 ⁶	Yes	UAV-Photo
2	CUS3D	CITYLID [49]	9	15000	1060 x 10 ⁶	No	ALS
2025	TALD	TALD [50]	4	121	9 x 10 ⁶	No	ALS

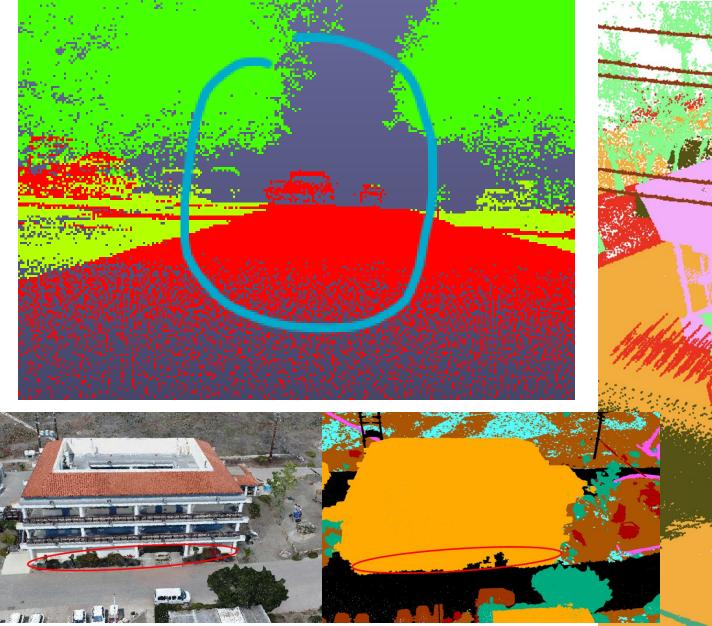
- no standards in class definition
- General lack class diversity
- imbalance (under-represented) classes
- multiple sensors (cameras, LiDARs)
- □ different attributes (RGB, I, etc.)
- □ different densities / resolutions

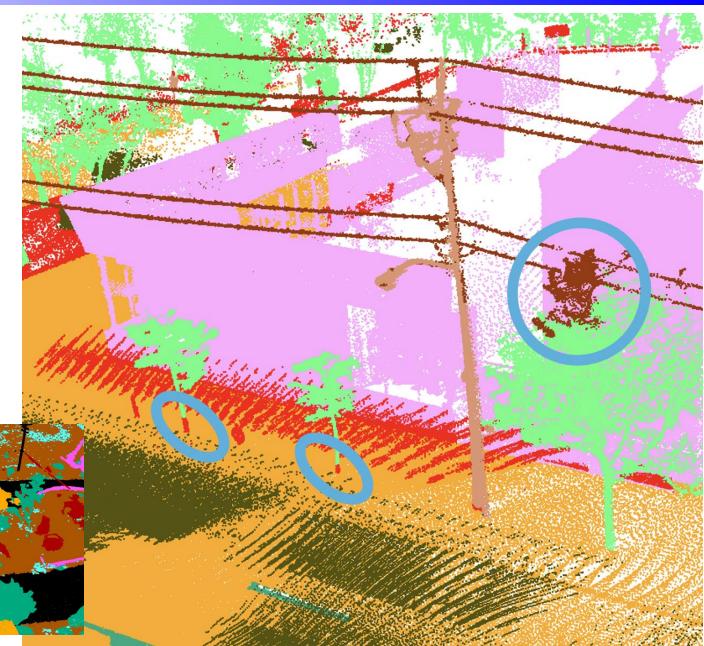
annotation errors



[Bayrak, O. Ma, Z., Farella, E.M., Remondino, F., Uzar, M., 2024: ESTATE: A Large Dataset of Under-Represented Urban Objects for 3D Point Cloud Classification. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-2024, 25–32]

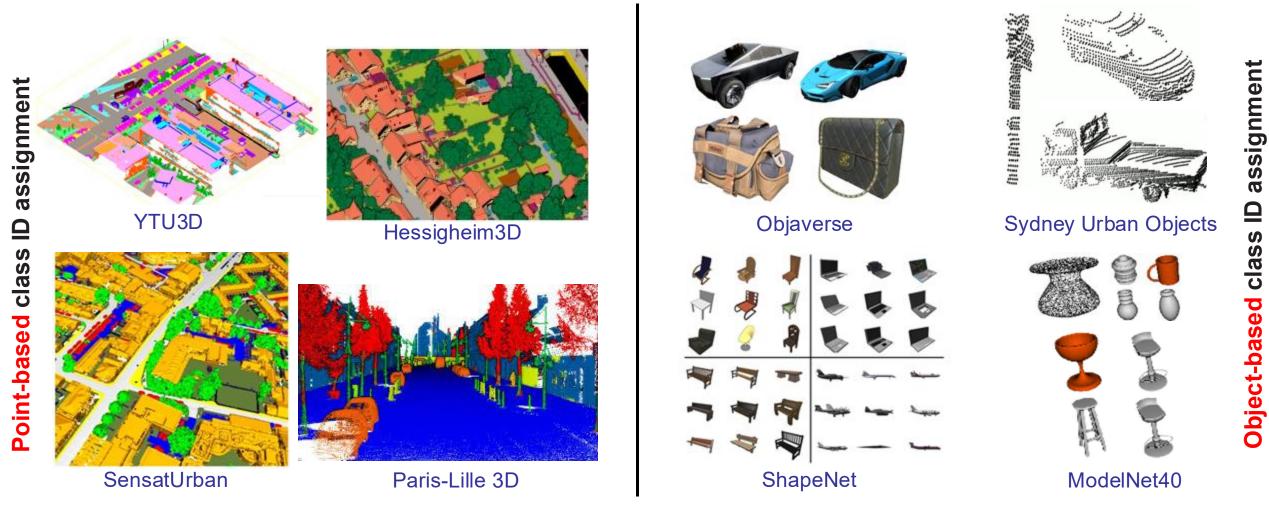
Annotations





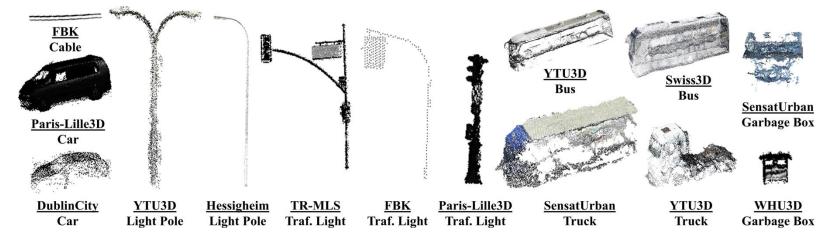
- A large dataset of under-represented urban objects for 3D point cloud classification (ESTATE)
 (Onur Bayrak, Zhenyu Ma, Elisa Farella)
- Knowledge Extended Neural Network (KENN)
- (Eleonora Grilli, Marteen Bassier)
- □ Semantic segmentation in 3D forestry
- (Narges Takhtkeshha, Gottfried Mandlburger, Juha Hyyppä)
- Visual Language Models to support 3D classification (Ashkan Alami)

Point-based vs object-based dataset



[Bayrak, O. Ma, Z., Farella, E.M., Remondino, F., Uzar, M., 2024: ESTATE: A Large Dataset of Under-Represented Urban Objects for 3D Point Cloud Classification. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-2024, 25-32]

ESTATE dataset - a large dataset of under-represented urban objects for 3D point cloud classification

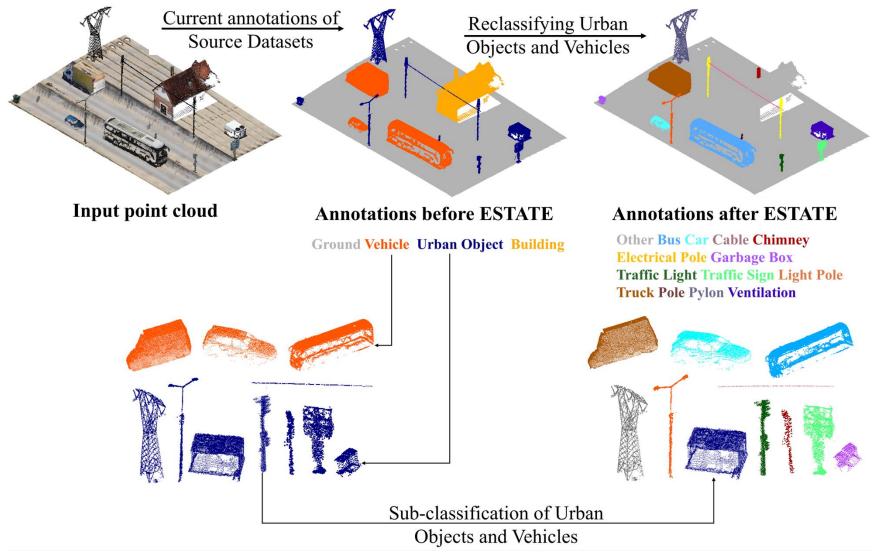


Name	Reference	Classes	Total Numb. of Objects	Target	Scene Type
Sydney Urban Objects	De Deuge et al. (2013)	14	588	Outdoor scenes	Real World
ModelNet10	Wu et al. (2015)	10	4596	Indoor objects	Synthetic
ModelNet40	Wu et al. (2015)	40	12311	Indoor objects	Synthetic
ShapeNet	Chang et al. (2015)	55	51190	Indoor objects	Synthetic
ScanNet	Dai et al. (2017)	17	12283	Indoor scenes	Real World
ScanObjectNN	Uy et al. (2019)	15	2902	Indoor objects	Real World
Objaverse	Deitke et al. (2022)	21 K +	10 million +	Indoor objects	Synthetic
ModelNet40-C	Sun et al. (2022)	15	185000	Indoor objects	Synthetic
ESTATE (Our)	Bayrak et al. (2024)	13	6528	Outdoor scenes	Real World

[Bayrak, O. Ma, Z., Farella, E.M., Remondino, F., Uzar, M., 2024: ESTATE: A Large Dataset of Under-Represented Urban Objects for 3D Point Cloud Classification. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-2024, 25–32]

	No Feature		With I	ntensi	ty							
		A	LS	M	MLS		UAV-Photogrammetry			ALS	MLS	
Dataset properties and classes	WHU3D	DublinCity	FBK	Paris-Lille3D	TR-MLS	SensatUrban	Swiss3DCity	STPLS3D	YTU3D	Hessigheim	Toronto3D	Number of Objects in ESTATE
Approx. point density (pts/m ²)	600	348	140	2000	700	400	1000	100	1000	800	1000	
Light Pole	337	258	70	52	48	8	5	116	346	32	64	1336
Traffic Light	79	3	2	15	17	-	-	16	6	-	26	164
Pole	135	71	27	24	28	-	13	67	39	18	32	454
Electr. Pole	7	-	83	2	-	-	-	43	-	-	41	176
Traffic Sign	231	5	74	124	114	9	-	36	20	14	43	670
Pylon	-	8	125	-	-	-	-	-	-	-	-	133
Cable	-	81	43	-	-	-	-	-	-	-	183	307
Garbage Box	87	-	-	162	13	369	17	-	120	66	-	834
Car	85	80	-	274	7	130	-	-	801	28	78	1483
Truck	10	-	5	-	2	20	14	6	64	-	-	121
Bus	7	30	-	-	-	3	2	2	38	-	-	82
Chimney	-	54	65	-	-	-	232	-	234	40	-	625
Ventilation	-	-	-	-	-	38	-	-	105	-	-	143
Total	978	590	494	653	229	577	283	286	1773	198	467	6528

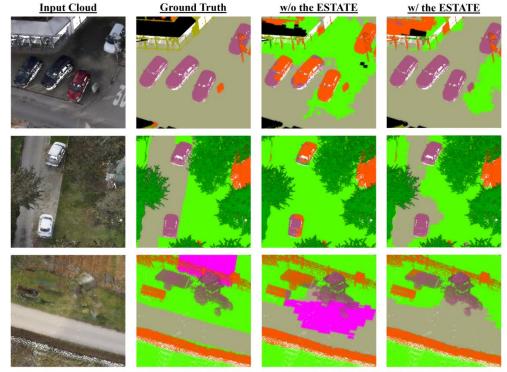
Support classification of classes with under-represented objects



[Bayrak, O. Ma, Z., Farella, E.M., Remondino, F., Uzar, M., 2024: ESTATE: A Large Dataset of Under-Represented Urban Objects for 3D Point Cloud Classification. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-2024, 25–32]

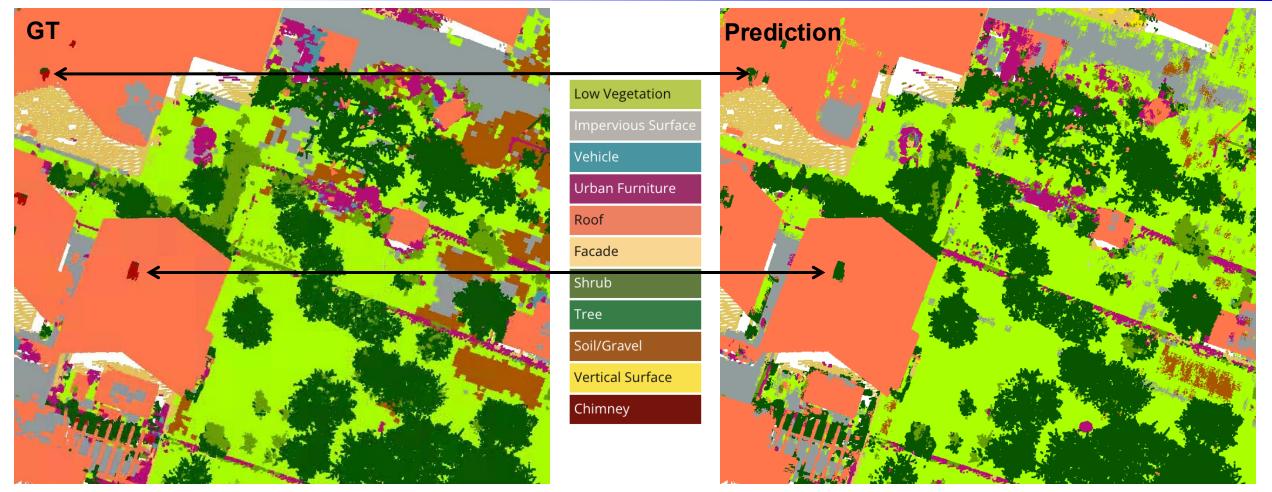
□ Hessigheim3D benchmark: the augmentation of the Vehicle and Urban Furniture classes resulted in an improvement in classification performance by 26% and 7%, respectively

Class —	w/o the	ESTATE	w/ the ESTATE				
Class —	IoU (%)	F1-Score (%)	IoU (%)	F1-Score (%)			
Low Vegetation	65.07	78.84	67.98	80.94			
Impervious Surface	61.84	78.28	61.21	77.94			
Vehicle	32.87	49.47	58.99	74.21			
Urban Furniture	31.52	48.08	38.67	55.58			
Roof	85.48	92.17	82.96	90.69			
Façade	63.97	78.03	65.43	79.11			
Shrub	47.31	64.23	48.39	65.22			
Tree	91.48	95.55	91.45	95.54			
Soil/Gravel	0.04	0.07	23.18	37.64			
Vertical Surface	56.88	72.51	56.75	72.41			
Chimney	0.090	16.55	0.00	0.00			
Mean	48.87	61.25	54.09	66.29			



Impervious Surface Low Vegetation Tree Vehicle Urban Furniture Soil/Gravel Roof Facade

[Bayrak, O. Ma, Z., Farella, E.M., Remondino, F., Uzar, M., 2024: ESTATE: A Large Dataset of Under-Represented Urban Objects for 3D Point Cloud Classification. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-2024, 25–32]



- KENN Knowledge Extended Neural Network to support better prediction of under-represented classes
 inject Prior Knowledge into a neural network via First Order Logic
 - > a chimney can only be on a roof
 - > a tree cannot be on a roof
 - a car can only be on the ground

- A neural network (NN) takes a set of features x as inputs and produces an initial output y containing predictions for *n* classes
- The KENN layer refines the initial predictions in order to increase knowledge satisfaction and release y'
- *K* is described as a set of logical rules (or constraints) that represent restrictions on the *n* classes to be predicted

$$\mathbf{x} \rightarrow \mathbf{NN} \rightarrow \mathbf{y} \rightarrow \mathbf{KENN} \rightarrow \mathbf{y}'$$

 $\forall u.\neg Linear(u) \lor \neg Vertical(u) \lor Pole(u)$

"every point *u* that is linear and vertical must be a pole"

 $\forall u, v \neg Building(u) \lor \neg Over(v, u) \lor \neg Pole(v)$

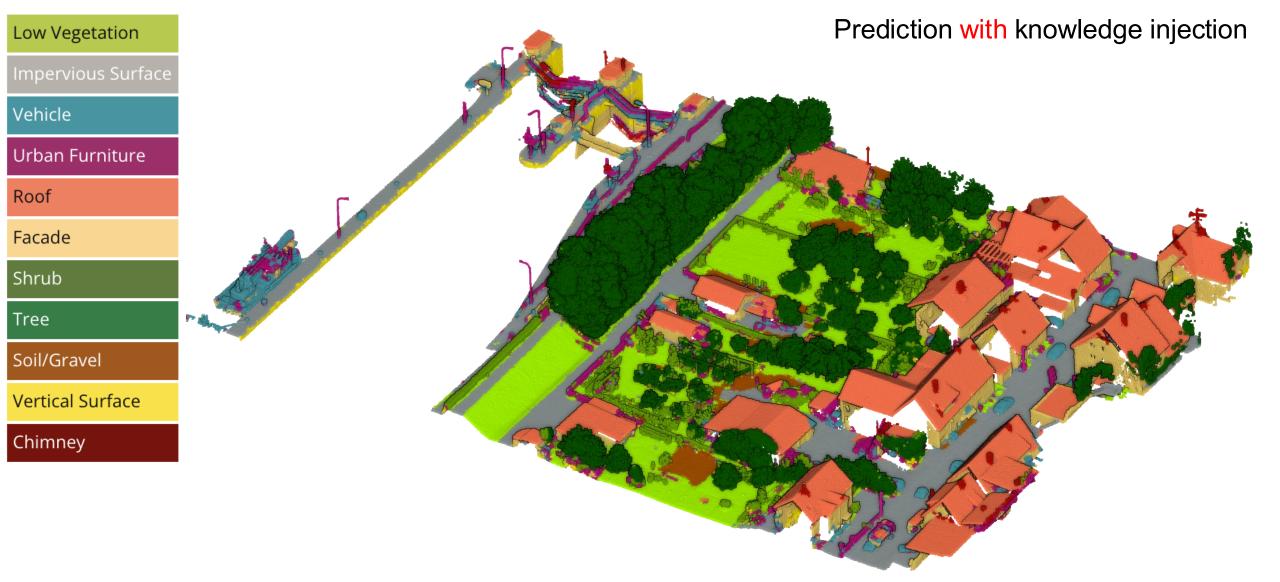
$$_: nLinear(x), nVertical(x), Pole(x)$$

"point building cannot have above a point pole"

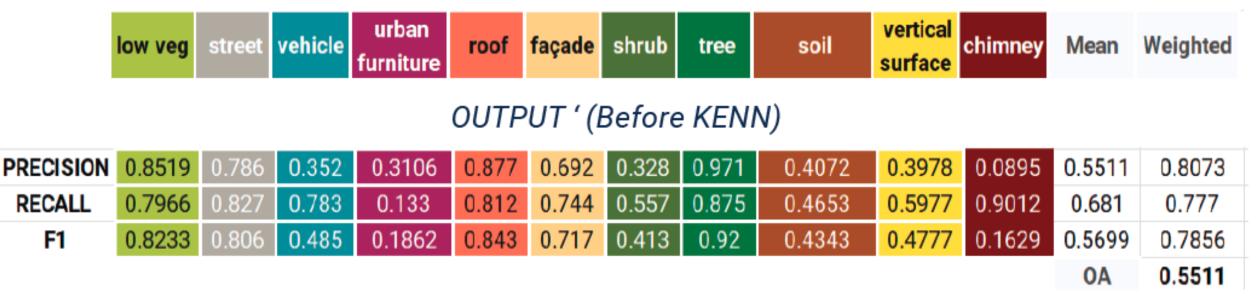
"everything that is both linear and vertical (in terms of Covariance Features) within the dataset is likely to belong to the class pole"

[Grilli, E., Daniele, A., Bassier, M., Remondino, F., Serafini, L., 2023: Knowledge Enhanced Neural Networks for Point Cloud Semantic Segmentation. Remote Sensing, 15(10):2590] Giving a meaning to 3D point clouds - Fabio Remondino

[Grilli, E., Daniele, A., Bassier, M., Remondino, F., Serafini, L., 2023: Knowledge Enhanced Neural Networks for Point Cloud Semantic Segmentation. Remote Sensing, 15(10):2590]



[Grilli, E., Daniele, A., Bassier, M., Remondino, F., Serafini, L., 2023: Knowledge Enhanced Neural Networks for Point Cloud Semantic Segmentation. Remote Sensing, 15(10):2590]



OUTPUT ' (After KENN)

PRECISION	0.8821	0.863	0.402	0.4302	0.894	0.776	0.437	0.976	0.5349	0.5001	0.9886	0.6995	0.8485
RECALL	0.8242	0.852	0.703	0.4474	0.921	0.735	0.651	0.918	0.4377	0.6365	0.9233	0.7319	0.8305
F1 (0.8522	0.857	0.511	0.4386	0.907	0.755	0.523	0.946	0.4815	0.5601	0.9601	0.7085	0.8372

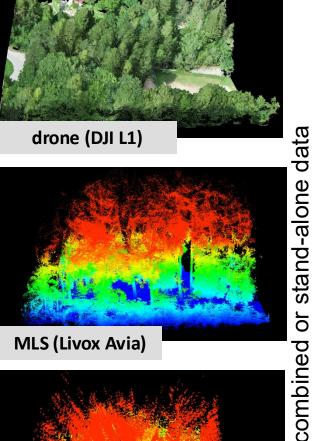
- Overall improvement everywhere, in particular for under-represented classes
- □ Role of rules and generalization aspects

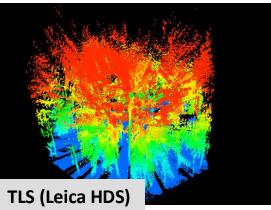
[Grilli, E., Daniele, A., Bassier, M., Remondino, F., Serafini, L., 2023: Knowledge Enhanced Neural Networks for Point Cloud Semantic Segmentation. Remote Sensing, 15(10):2590]

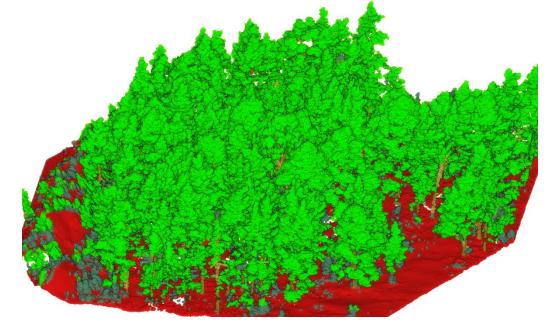
OA

0.8305

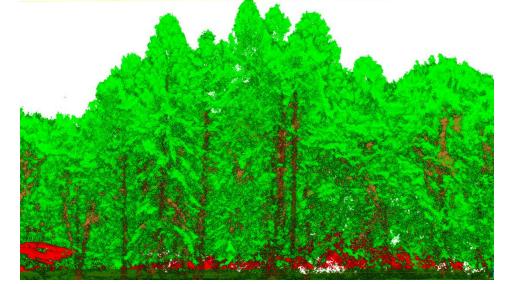
3D Forestry semantic segmentation

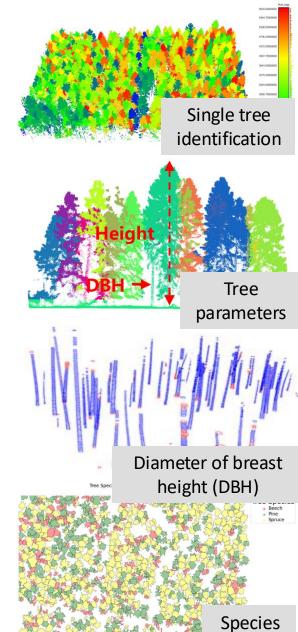






6 classes semantic segmentation with KPConv

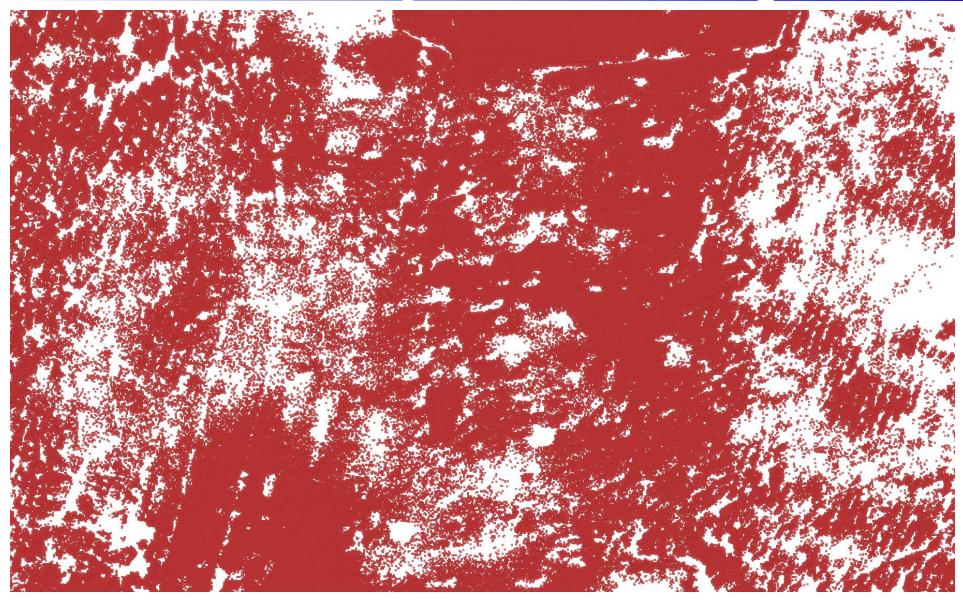




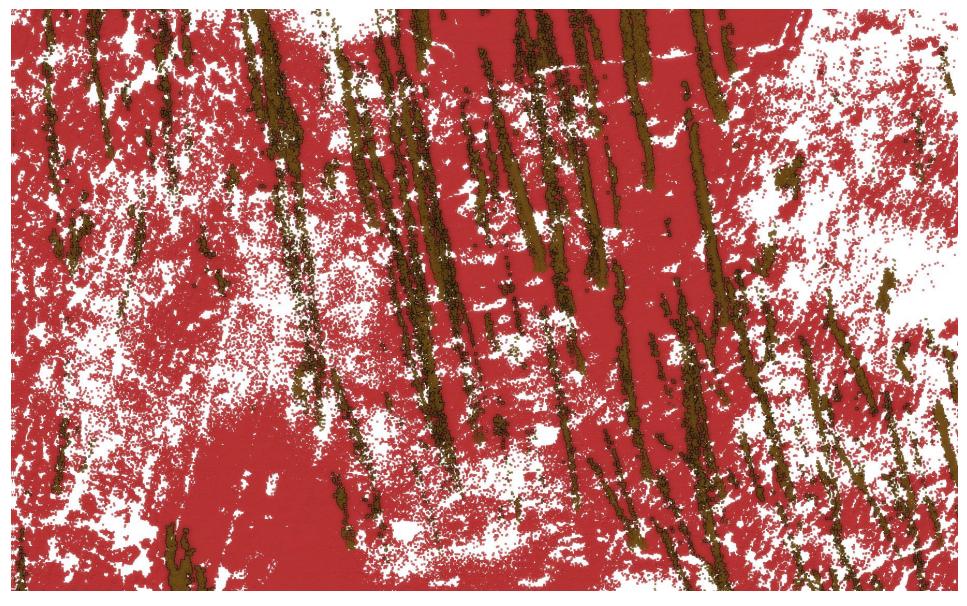
3D Forestry semantic segmentation

<u>GROUND</u>

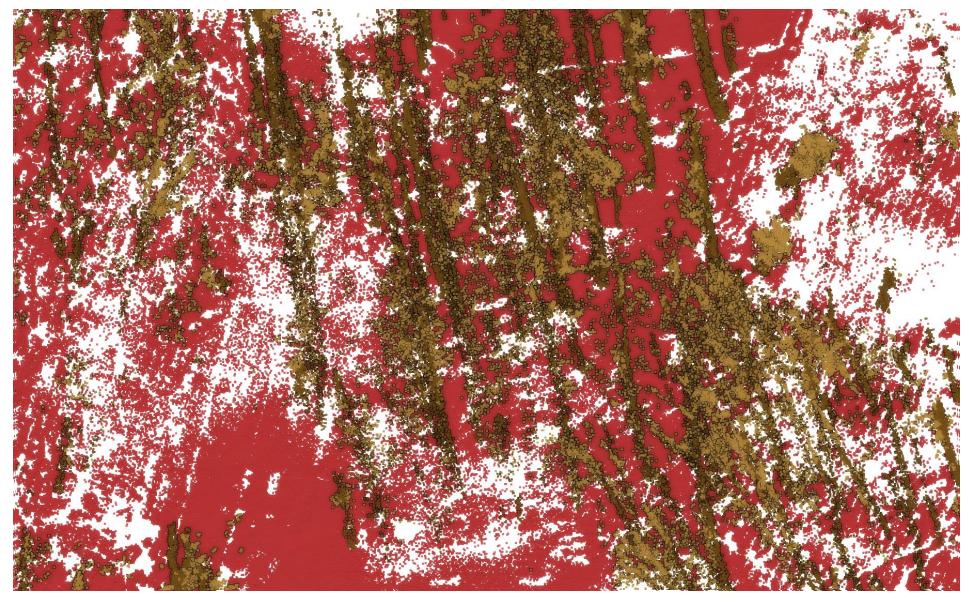
TRUNKS BRUNCHES LOW-VEGETATION CANOPY

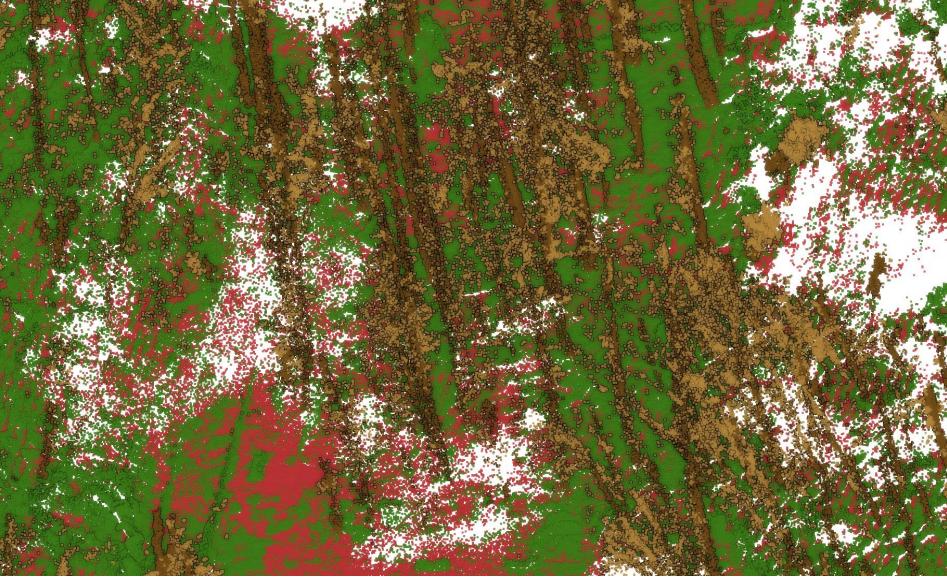


GROUND <u>TRUNKS</u> BRUNCHES LOW-VEGETATION CANOPY

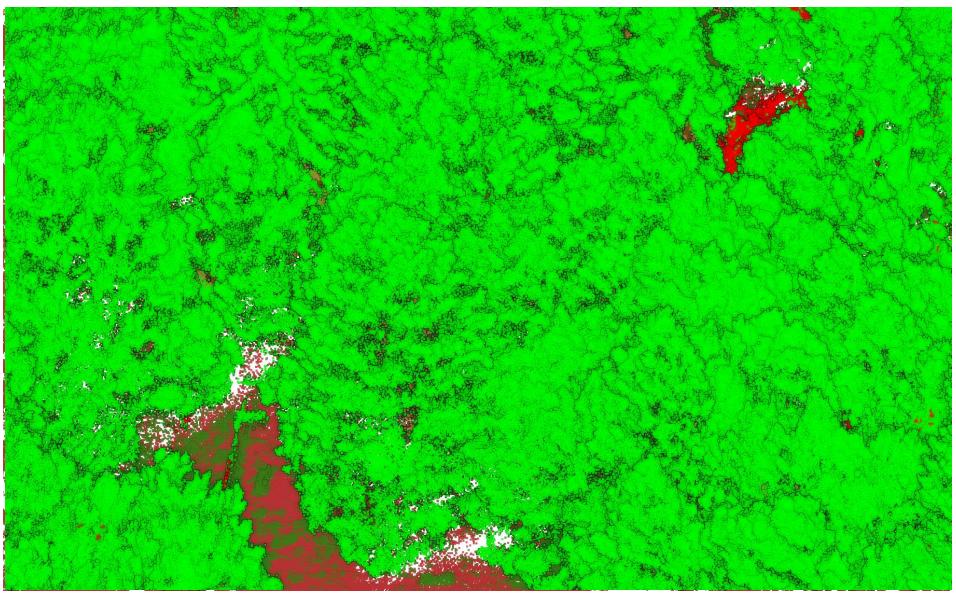


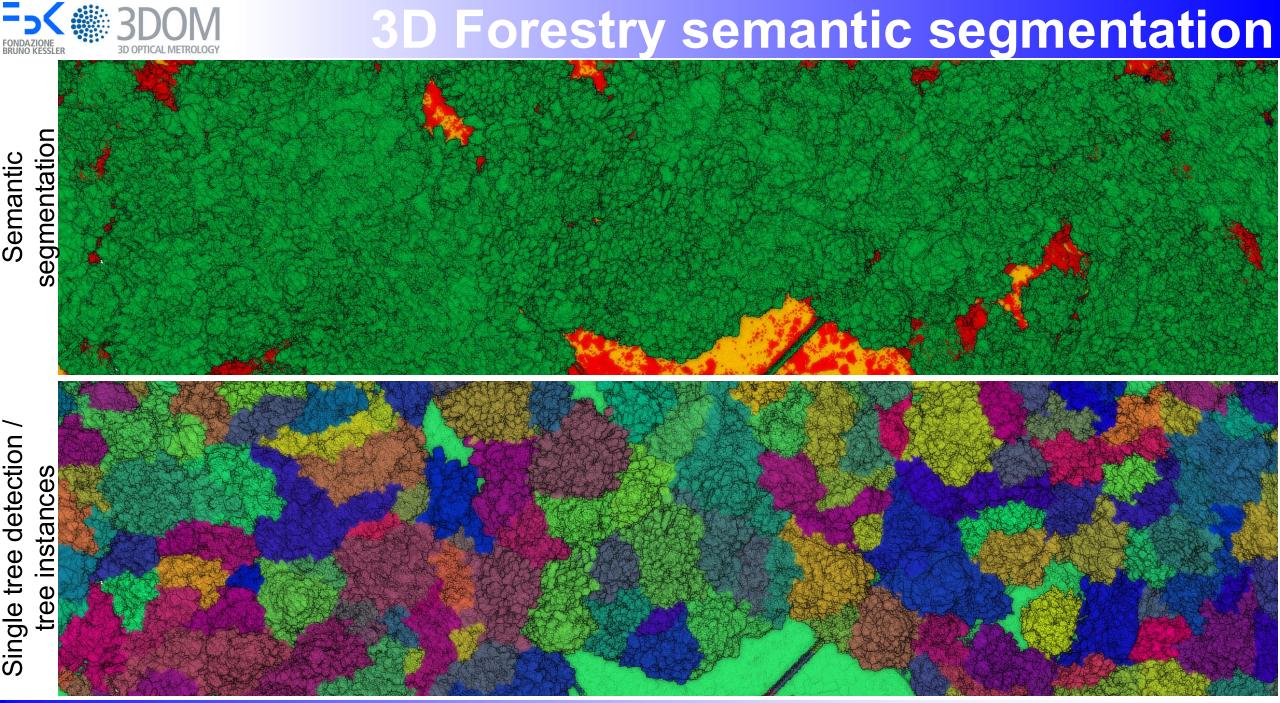
GROUND TRUNKS <u>BRUNCHES</u> LOW-VEGETATION CANOPY





GROUND TRUNKS BRUNCHES LOW-VEGETATION CANOPY





3D Forestry with Multispectral LiDAR

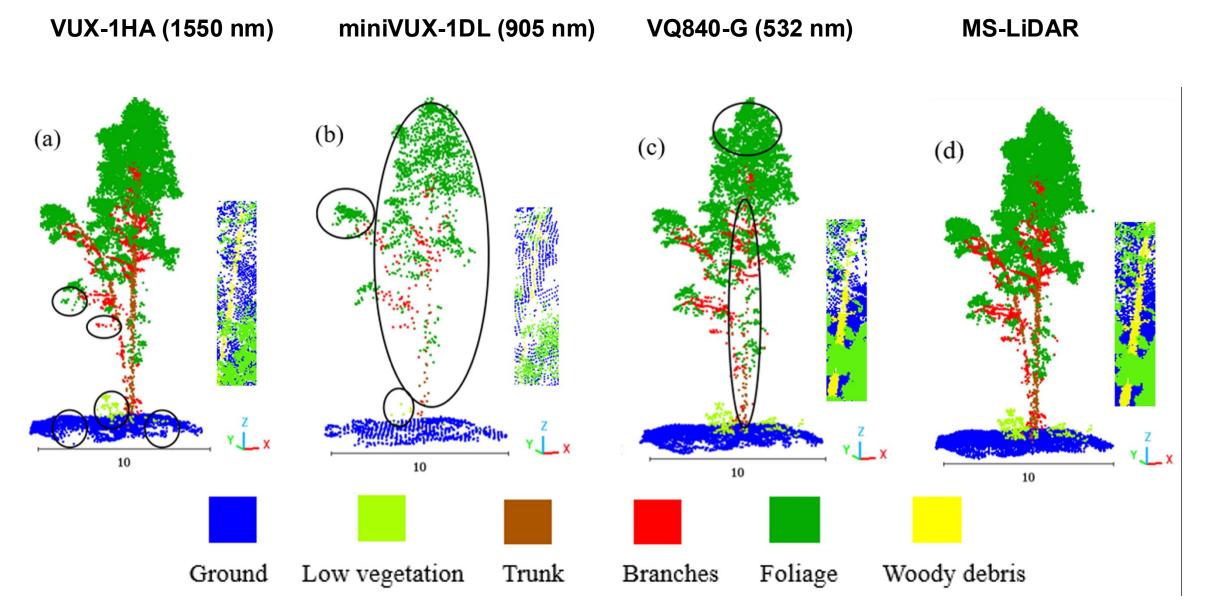
	RIEGL VQ-840-G			Channel 1 (SWIR) Channel 2 (NIR) Channel 3	
r				(Green) Tree species Geometry	Geometry+ Radiometric
	Forest monitoring task		curacy (%)	Lime	Maple
		Geometry	Geometry + Radiometric	Ground Pine Pine	Aspen
	Forest segmentation	62.8	71.50	Trunk Branches Foliage	Spruce
	Tree species classification	48.15	82.72	Foliage Woody debris	Rowan

[Takhtkeshha, N., Mandlburger, G., Remondino, F., Hyyppä, J., 2024: Multispectral Light Detection and Ranging Technology and Applications: A Review. Sensors; 24(5):1669]

Forest component segmentation (KPConv)

Tree species classification

3D Forestry with Multispectral LiDAR



Semantic Segmentation with Open-Vocabulary

□ VLM-based query of large scale scenarios through oblique aerial images

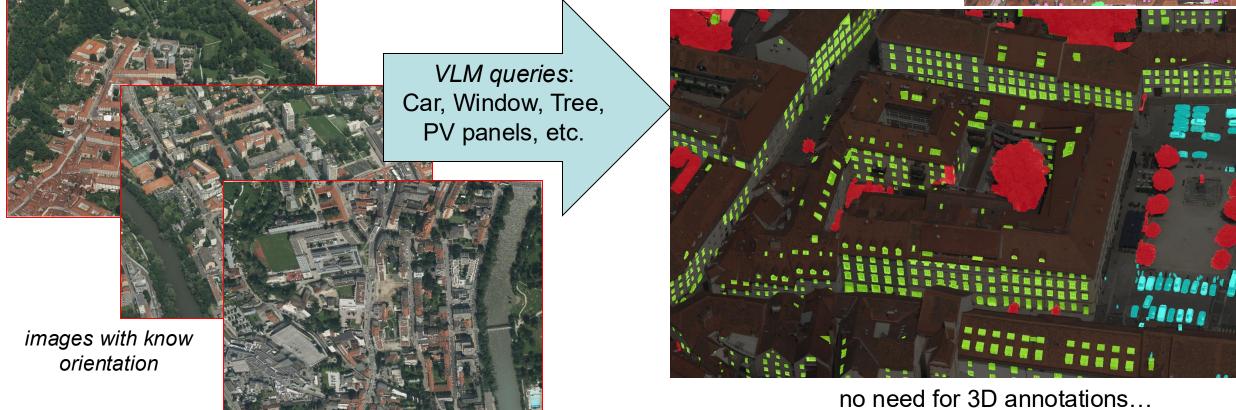


[Alami, A. and Remondino, F., 2024: Querying 3D point clouds exploiting open-vocabulary semantic segmentation of images. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2/W8-2024, 1–7]

Semantic Segmentation with Open-Vocabulary

□ VLM-based query of large scale scenarios through oblique aerial images

- □ Yolo-World + Grounding DINO -> bounding box for the target object
- □ SAM -> object mask around the target object
- Projection onto the point clouds using camera parameters
- Refinement using leveraging on geometric features



[Alami, A. and Remondino, F., 2024: Querying 3D point clouds exploiting open-vocabulary semantic segmentation of images. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2/W8-2024, 1–7]

□ 3D deep learning (KPConv) vs VLM-based / Open-vocabulary semantic segmentation

			-		Input Cloud	Annotation	3D DLS	Open-Vocabula.	Input Cloud	Annotation	3D DLS	Open-Vocabulary
Class	3D	DL	Op	en-					ALL RAD	C C C C C C C C C C C C C C C C C C C		
			voca	bulary		2 - 1/9 (<mark>R</mark> ~ (-93 ()		R. Sam	1	1	· · · ·
	loU	F-1	loU	F-1	13 31 9	RO 5 1 1 1		10 HI			, 👝 🗢	
		Score		Score			14 <u>()</u> 17 (<u>y sy</u> a	all's			
Building	93.75	96.78	78.10	87.70								
Vegetation	86.23	92.60	67.40	80.53	13 1 12 1		N. 9 . 6 .	A YAN				
Vehicle	47.44	64.36	37.61	54.66	ALC: ALC: ALC: ALC: ALC: ALC: ALC: ALC:		NP .00	X 97 0 6	3 1	a (1
Poles	50.62	67.21	19.18	31.93			a property					
Fence	26.41	41.78	2.01	3.94								
Imp.	65.92	79.46	12.87	22.80		13-1	N Sand I want	See.		And the second second	Alterna 🕅	
surface									M. TER	N. C.	and the second se	
Other (*)	31.32	47.71	23.18	37.63					2018-90, V			
Mean	57.38	69.94	34.34	45.60					a sta			

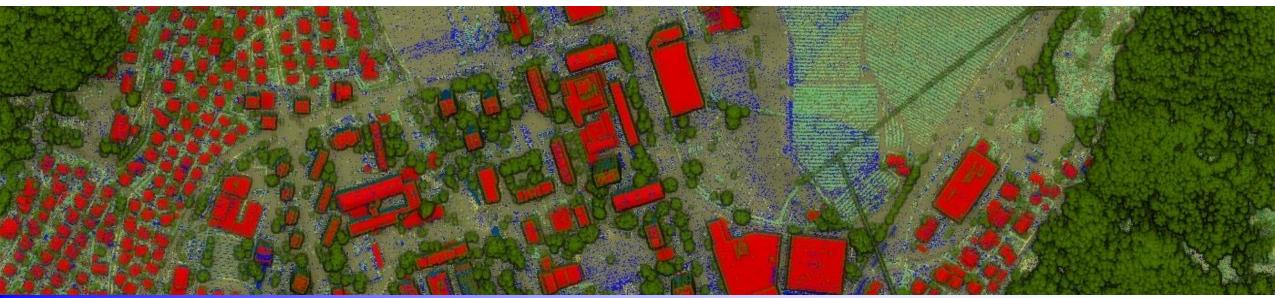
Building High Vegetation Vehicle Impervious Surface Pole Other Fence

□ So far, 3D DL performs better than LLM/Open Vocabulary methods

□ LLM could be complementary and / or support annotations

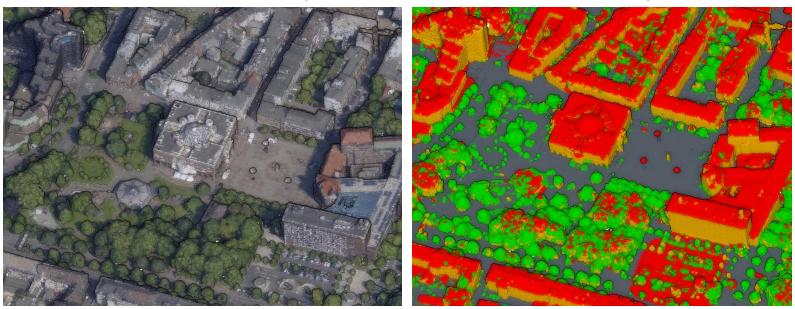
TAKE AWAY MESSAGES

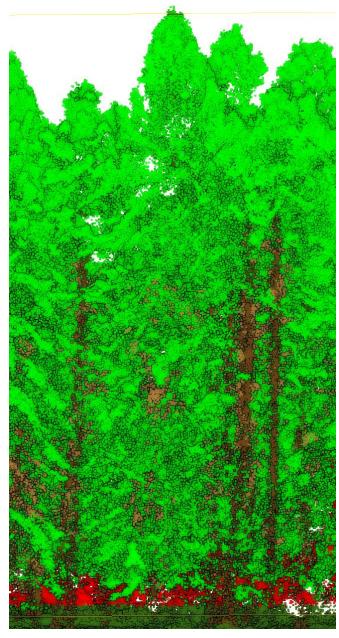
- Point cloud classification / semantic segmentation is still a very hot and open research task
- □ Methods (publications) fight for few % more (93.2% vs 93.4%), better consider:
 - □ generalization (ability to process any unseen scenario)
 - Classes standardization (at least for urban mapping?)
 - □ fully unsupervised methods
 - under-represented objects
 - explainability



WHAT'S NEXT?

- Strong need to develop easy and standardized procedures for real-world daily-based large-scale 3D applications
- Role of LLM / VLM / MLLM, as complementary to deep learning networks
- Foundation models for 3D geospatial data
- More collaborations with colleagues in neighboring disciplines and with end-users (companies and NMCAs)





THANK YOU FOR YOUR ATTENTION

EUROSDR WORKSHOP ON MULTISPECTRAL LIDAR

23 June 2025 (Online only - 14:30 - 17:30 CET)

Organizers: Juha Hyyppä, Gottfried Mandlburger, Fabio Remondino, Narges Ttakhtkeshha

Light Detection and Ranging (LiDAR) is a well-established active technology for the direct acquisition of 3D data. In recent years, the emergence of Multispectral LiDAR (MSL) systems, which operate with two or more wavelengths, is revolutionizing the simultaneous acquisition of height and intensity information. MSL sensor properties (e.g., wavelength, instrument size and measurement range) are selected with respect to the intended application and domain which vary from forestry mapping, Land Use Land Cover (LULC) classification or change detection to bathymetry, topographic mapping, archaeology and geology.

MSL sensors provide information on the full 3D distribution of materials with improved penetration capacity hence they are becoming a valuable solution for geospatial data acquisition for NMCAs.

This online EuroSDR workshop on Multispectral LiDAR aims to review the emerging MSL and its possible application, with technical presentations and best practices from companies and mapping agencies.

